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Introduction
Methamphetamine (MA) is a widely abused substance 
that acts as a brain stimulant, emulating the physiological 
effects of monoamines such as dopamine. The activation 
of the brain’s reward system by MA, coupled with its 
affordability, primarily contributes to the intense cravings 
for MA. This can lead to dependence and addiction on 
a global scale1 and can be related to other psychiatric 
disorders.2,3 Methamphetamine-dependent individuals 
(MDIs) often suffer from various psychological issues, 
such as cognitive impairments and neurobehavioral 
disturbances, due to brain structural damage. This 
damage may include cortical loss, disruptions in normal 
cortical functions, and alterations in dopaminergic 
pathways connecting the limbic system, cingulate gray 
matter, putamen, caudate, and striatum nuclei.4 As a 
result of these pathological changes, chronic MA abuse 
can affect both neurotransmitter systems and neuro-
electrical activity within the brain.5 Substance dependence 
disorders are characterized by their chronic, relapsing 

nature and long-term health consequences. They pose 
significant challenges to society by contributing to a wide 
range of issues such as illness, criminal activity, accidents, 
domestic violence, and homelessness, among others.6 
Developing a reliable method to distinguish MDI from 
normal controls (NC) based on noninvasive techniques 
could serve as an invaluable tool.

Time series, generated by collecting sequential 
measurements of a specific variable over time, is a 
prevalent method across various scientific disciplines and 
industries. Types of time series analyzed range widely.7 The 
highly comparative time-series analysis (hctsa) software 
provides a systematic, algorithm-based platform that 
enables the calculation of numerous structural attributes 
from a single time series. These characteristics include 
fundamental distribution statistics, linear correlation 
configurations, stationarity, entropy, and information-
theoretic metrics. The applied techniques are derived from 
the nonlinear time-series analysis domain in physics as 
well as linear and nonlinear model fitting, among others.7,8 
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Abstract
Background: Methamphetamine is a chemical substance which affects the brain electrical activity 
of addicted individuals. The study aimed to assess the potential of using electroencephalography 
(EEG) signals and machine learning (ML) techniques to distinguish individuals with 
methamphetamine (MA) dependence from healthy individuals. 
Methods: The researchers utilized highly comparative time-series analysis (hctsa) for feature 
extraction. Three ML algorithms, logistic regression (LR), support vector machine (SVM), and 
random forest (RF), were employed to process the data. Various combinations of top 40 features 
were used to test the possibility of reaching 100% accuracy. 
Results: Although individual features did not achieve 100% accuracy, combinations of two 
features resulted in two distinct states with a prediction accuracy of 100% when using the SVM 
approach. Even more combinations of features with 100% accuracy were found when utilizing 
more features. 
Conclusion: Based on the findings, SVM, LR, and RF classifiers, combined with feature extraction 
through the hctsa method, demonstrated exceptional accuracy in identifying MA users among 
healthy individuals using a single EEG channel. The classification accuracy reached up to 100%.
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Hctsa has recently garnered considerable attention in 
electroencephalography (EEG) signal processing for 
applications such as sleep staging 9, cognitive impairment 
detection 10, and visuomotor tracking state detection.11 

Machine learning (ML) originates from the convergence 
of statistics-which aims to identify relationships within 
data- and computer science-which emphasizes effective 
computational algorithm development.12 The application 
of ML for automated analysis for medical purposes 
is gaining significant interest, particularly in clinical 
diagnostics that rely on EEG data.13 These techniques 
have been widely used in various fields of medicine, such 
as detecting depression severity,14 seizure detection,15,16 
association between substance use and violence 17, and 
emotion recognition18,19 by EEG recordings or other types 
of medical data. This research seeks to examine three ML 
methods with the top 40 features extracted from hctsa to 
assess the differences between healthy individuals and 
those with MA dependence.

Methods
Sampling
The EEG recordings of MA users in abstinent periods 
and healthy individuals were utilized in this study.4 The 
selected MA users had an average duration of 5 years of 
MA use and a 7–9 day abstinent period. All males aged 
between 20 and 45 years. Participants were recruited from 
the Razi Mental Hospital in Tabriz, Iran, with patients 
and healthy individuals being selected from the inpatient 
and outpatient populations, respectively. The inclusion 
criteria for the study required patients to have a history 
of prolonged MA use, lasting at least one year, as well as 
a positive MA screening test within the past month. On 
the other hand, the exclusion criteria for participants 
consisted of a history of seizures, a positive history of 
neurological disorders, cognitive impairment, long-term 
or high-dose intake of sodium valproate, chlorpromazine, 
lamotrigine, benzodiazepines, or topiramate. The 
maximum permissible doses of these medications were 
0.5 mg alprazolam, 25 mg chlorpromazine, 250 mg 
sodium valproate, 25 mg lamotrigine, 1 mg lorazepam, 25 
mg topiramate, and 0.25 mg clonazepam. Furthermore, 
potential participants were excluded if they had a history 
of any mental illness or had tested positive for morphine 
within the last 90 days. The recordings of nine healthy and 
ten MDI were extracted after preprocessing the raw data.

Electroencephalography Recording
In this study, the EEG signals were acquired using a 
19-channel silver-chloride (Ag/Cl) electrode array, in 
accordance with the conventional 10-20 system. The array 
was connected to an EEG amplifier (Mitsar, Russia) for 
signal enhancement. During the EEG recording process, a 
linked-ear reference was employed to maintain electrode 
impedance below 5 kΩ consistently. The acquired signals 
were sampled at a frequency of 500 Hz to ensure accurate 
data representation.

Both control and experimental groups participated 
in a 10-minute EEG recording session under resting 
conditions with eyes closed. This approach aimed 
to capture cerebral activity effectively and reliably. 
For participants with a history of MA use, the EEG 
recording session was conducted during their first week 
of admission, before administering increased dosages 
of psychiatric medications. This timing ensured that 
potential confounding factors were minimized and the 
recorded data accurately reflected their cerebral activity.

Preprocessing Electroencephalography Signal
EEG signals are typically susceptible to contamination 
from various sources. In this study, the EEGLAB toolbox 
(version 3.8) was employed to preprocess the EEG data 
before extracting features. The artifacts were automatically 
eliminated using artifact subspace reconstruction bad 
burst rejection, allowing for a maximum 0.5-second 
window standard deviation of 5 and a maximum of 5% 
out-of-bound channels.

High-frequency components within the EEG signal 
may be contaminated with muscle artifacts or eye 
movement interference. To address this issue, a low-pass 
finite impulse response filter with a cutoff frequency of 
40 Hz was applied for artifact removal. Furthermore, 
low-frequency components of the EEG signal (below 0.5 
Hz) could be influenced by head or body movements. 
A high-pass filter with a cutoff frequency of 1 Hz was 
implemented to minimize these artifacts. Additionally, a 
notch filter was utilized to eliminate the 50 Hz frequency 
component linked to power line noise since filters are not 
entirely ideal and may result in the leakage of adjacent 
frequency components.

Feature Extraction and Selection
In this study, feature extraction was performed by 
employing the hctsa software (version 1.08), which 
encompasses a comprehensive set of 1,080 master 
operations capable of extracting a total of 7752 distinct 
features. These features originate from various scientific 
disciplines, including neuroscience, seismology, physics, 
economics, and artificially generated simulated data.7,8 
Notably, the extraction process can be executed using 
a single EEG channel within the hctsa framework. Our 
previous research demonstrated a significant difference in 
coherency between the Cz and C3 channels,4 prompting us 
to select the Cz channel for subsequent analysis in feature 
extraction using hctsa. Furthermore, this investigation 
employed a dataset consisting of 50,000 EEG samples for 
analysis within the hctsa software.

Classification Methods
Data normalization can substantially enhance the accuracy 
of specific ML models, and certain models may exhibit 
suboptimal performance in the absence of normalized 
data. In this study, the top 40 features extracted from 
the hctsa software were subjected to normalization prior 
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to the classification analysis. The Min-Max Scaler was 
selected as the normalization technique for our research, 
as it effectively rescales the data to a range of [0, 1]. 
This process can be mathematically represented by the 
following equation: 

X_normalized = (X – X_min) / (X_max – X_min) 

To evaluate the proficiency of feature extraction 
through hctsa in classifying data, three ML methodologies 
were employed, including support vector machine 
(SVM), logistic regression (LR), and random forest (RF). 
The SVM is a versatile supervised classification algorithm 
that accommodates various kernel types, such as linear, 
polynomial, and radial basis function kernels.20 SVM has 
proven effective in high-dimensional spaces, especially 
when the number of dimensions exceeds the number of 
subjects. A linear support vector classifier, fine-tuned 
with a regularization parameter (C) set to 1, a tolerance 
threshold for stopping criteria of 1e-4, and a linear kernel 
were utilized in the present study. This configuration 
highlights SVM’s capability in handling complex high-
dimensional data landscapes and facilitating robust and 
precise categorization between healthy individuals and 
MA-dependence patients.

LR provides insights into the relationship between 
predictor variables and binary outcomes by fitting a 
logistic or sigmoid function to the given data. This 
function maps predictor values onto a continuum between 
0 and 1, representing the likelihood of event occurrence. 
As a classification algorithm, LR is widely used due to its 
straightforward implementation, ease of interpretation, 
and ability to accommodate both categorical and 
continuous predictor variables.21 In our study, the limited-
memory Broyden-Fletcher-Goldfarb-Shanno method 
was employed as the optimization algorithm for LR. The 
model was augmented with an L2 regularization penalty, 
where the regularization parameter, C, was set to 1.0. 
The algorithm was set to cease iterations upon reaching a 
tolerance threshold of 1e-4, and the maximum number of 
iterations was capped at 100.

The RF classifier is an ensemble learning method 
that combines multiple decision tree (DT) classifiers. 
Each classifier is generated using a distinct random 
vector independently sampled from the input vector.22 
Every individual tree contributes a unit vote toward the 
classification of an input vector, favoring the class with 
the highest frequency of votes. In our RF application, 
the ensemble was configured to consist of 100 individual 
DTs. The maximum depth parameter was left undefined, 
allowing nodes to expand without limitation until each 
leaf contained fewer samples than the specified minimum 
split threshold. Additionally, the minimum number of 
samples necessary for a leaf node was set to one.

Validation of Classification Models
The design of a classifier requires a comprehensive and 

impartial evaluation of its performance across a spectrum 
of features and classifier designs, with suitable coefficient 
values that correspond to a large cohort of subjects. To 
ensure a fair and robust evaluation, the K-fold cross-
validation technique was employed, whereby the dataset 
was partitioned into 9 equal segments, each containing 
an equal number of study participants. In each iteration, 
8 segments were used as the training subset, while the 
remaining segment was utilized as the test subset. This 
iterative process allows for an accurate assessment of the 
classifier’s performance and convergence in scenarios 
where data points are limited or when features are 
employed for both training and testing the model.

Results 
Highly Comparative Time-Series Analysis Features
The results of analyzing data with hctsa indicated that 
6070 features, out of the 7752, produced real values 
for all the subjects, and the remaining certain features 
produced special values (fatal errors or non-real values). 
In this study, the TS_Normalize function in hctsa was 
employed to eliminate the features that produced special 
values in over 21% of the time series for each dataset. 
On average, 1682 features were eliminated from each 
subject. The range of values generated by the remaining 
hctsa features varied across features. Nonetheless, the 
TS_Normalize function includes a normalization method 
to transform the extracted data into a range between 0 
and 1. To better visualize similar features, the TS_Cluster 
function implemented inside the hctsa was used to 
reorder rows and columns of the extracted results. The 
results of clustered features are shown in Figure 1. This 
is a data matrix consisting of rows of different time series 
(EEG data for each individual) and columns of extracted 
features from hctsa that were normalized and reordered. 

Not all the features extracted from hctsa are useful 
for classification purposes. The most useful features can 
be extracted by the TS_TopFeatures function in hctsa. 
The top 40 features utilized in our study are illustrated 
in Figure 2. The scatter distribution of each feature is 
depicted in Figure 2a with blue and red colors for the NC 
and MDI groups, respectively. Additionally, Figure 2b 
displays the median and interquarter range for each of the 
normalized 40 top features for NC and MDI groups. 

Data Classification
Classifying the data with SVM, LR, and RF indicated 
that using hctsa for feature extraction resulted in high 
distinguishing power between the groups of the study. 
The Python code was employed to evaluate the accuracy 
of using different combinations of the top 40 features in 
SVM, LR, and RF classifiers. The results of our inquiry 
revealed that there was not any state in which a single 
feature could lead to an accuracy of 100% with SVM, LR, 
and RF classifiers. However, there were two states with 
combinations of two features in which using the SVM 
classifier could lead to an accuracy of 100%. Furthermore, 
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Figure 1. Data Matrix of 19 Rows and 6,070 Columns Including Features Generated From 1,080 Master Operations With Hctsa. Note. Hctsa: Highly comparative 
time-series analysis. Each row represents the EEG data from the subjects of the study, and each column is a feature that was normalized and reordered for better 
visualization. NC: Normal Control; MDI: Methamphetamine dependence individual

Figure 2. Visualization List of the Top 40 Features Extracted by Hctsa. Note. (a) represents the scatter distribution of normalized values for each feature. Blue and red 
dots display the NC and MDI groups, respectively. (b) shows the box plot of each top 40 feature represented by their median and interquartile range. Each feature 
is depicted by its ID in the hctsa toolbox. NC: Normal Control; MDI: Methamphetamine-dependence individual. Hctsa: Highly comparative time-series analysis
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using three combinations of features led to 134, 89, and 
100 different states in which the accuracy was 100% in 
SVM, LR, and RF classifiers, respectively. Using more 
combinations of features results in a higher number 
of states in which the accuracy is 100%. The results 
demonstrated the number of states in which the accuracy 
of using various combinations for each classifier was 100% 
(Table 1). Considering that the computational cost for 
evaluating the accuracy for all combinations is extremely 
high, the results were computed for the combinations of 
selecting 1, 2, 3, 4, and all 40 features. In addition, selecting 
all top features for classification resulted in 100% accuracy 
with just the LR model. It may be worth noticing that the 
total number of combinations of selecting 1, 2, 3, 4, and 
40 features are 40, 780, 9880, 91390, and 1, respectively. 

Discussion 
To the best of our knowledge, this study represents the 
first attempt to apply the hctsa method for classifying 
resting-state EEG data into healthy and MDI groups. The 
study evaluated the efficacy of hctsa and fundamental 
ML classification approaches in distinguishing between 
healthy individuals and those with MA dependence. 
Three distinct ML methods were assessed, specifically 
SVM, RFs, and LR. The results confirmed that multiple 
feature combinations achieved 100% accuracy across all 

three methods.
Overfitting is a common challenge in ML, occurring 

when a model becomes overly adapted to the peculiarities 
of the training dataset, thus failing to recognize a 
generalized predictive pattern.23 To address overfitting, 
this study employed stratified k-fold cross-validation for 
accuracy assessment, ensuring that the testing dataset 
remained independent from the training dataset. 

Numerous studies have primarily focused on individuals 
with addiction and implemented knowledge-based 
systems using EEG signals to aid human decision-making 
in forecasting substance dependence and generating 
insights for developing treatment strategies targeting 
substance abuse. Table 2 presents recent studies that have 
identified MA abuse by incorporating EEG methodology 
into their research framework. 

Ahmadlou et al pioneered the application of resting-
state EEG in distinguishing MA abusers from non-
drug-using controls. Their research involved assessing 
individuals with a history of MA abuse, revealing 
significant disruptions in functional connectivity within 
the gamma band. These findings provided valuable 
insights into the neurophysiological consequences of MA 
abuse.24 Shahmohammadi et al employed event-related 
potentials to differentiate between MA abusers and 
control subjects. They utilized the area under the curve 
of windowed event-related potentials, elicited by a visual 
paradigm comprising both drug-related and neutral 
imagery. This novel approach proved to be effective, as it 
facilitated the differentiation between MDI and NC with 
an accuracy rate of 80%.6 

In a more recent study, Ding et al developed RF, SVM, 
and LR models based on power spectrum density. These 
models demonstrated superior accuracy, achieving rates 
of 89%, 90%, and 90%, respectively.25 A further developed 
SVM model, augmented by an array of features such 

Table 1. Number of Ways of Reaching the Accuracy of 100 With Various 
Combinations of 40 Top Features

Number of Top Features

1 2 3 4 40

Classifying 
method

SVM 0 2 134 2 933 0

LR 0 0 89 3 109 1

RF 0 0 100 589 0

Note. SVM: Support vector machine; LR: Logistic regression; RF: Random forest.

Table 2. Comparing the Results of Using Different Methods of Classifying Between Healthy and MA Addicted Individuals

Authors feature Extraction Method Classification Method Accuracy (%) Reference

Ahmadlou et al Visibility graph similarity in the gamma band EPNN 83 24

Shahmohammadi et al Area of positive sections below the time window Subconscious craving-based algorithm 80 6

Khajehpour et al
Clustering coefficient, node strength, pairwise 
weighted phase lag index

SVM 93 1

Ding et al Power spectrum

RF 89

25SVM 90

LR 90

Chen et al Spectral densities before and after virtual reality

SVM 36

26

LR 64

DT 84

RF 68

MLP 72

RBFN 72

AB 68

GB 76

Note. EPNN: Enhanced probabilistic neural network; SVM: Support vector machine; RF: Random forest; LR: Logistic regression; DT: Decision tree; MLP: Multilayer 
perceptron; RBFN: Radial basis function networks; AB: Ada boost; GB: Gradian boost; MA: Methamphetamine.



Meynaghizadeh-Zargar et al

Biomed Res Bull, 2024, Volume 2, Issue 254

as the clustering coefficient, node strength, and the 
pairwise weighted phase lag index, represented a superior 
predictive accuracy, quantifiably reaching 93%.1 Chen et 
al considered virtual reality as a method of differentiation, 
utilizing eight distinct machine-learning techniques. 
Nevertheless, only the DT algorithm could produce the 
most accurate results, boasting a commendable accuracy 
rate of 84%.26 

ML methodologies are also applied in the medical 
field to differentiate between healthy individuals and 
other kinds of addiction, such as alcoholism. Prior 
research utilizing SVM and LR classifiers demonstrated 
a classification accuracy ranging from 85% to 95%.27-29 
Farsi et al achieved a substantial accuracy of 93% using a 
long short-term memory (LSTM) computational model.30 
The highest accuracy in distinguishing between healthy 
individuals and those with alcoholism is attributed 
to two recent studies. Salankar et al31 employed four 
distinct classification methodologies, along with three 
features derived from second-order difference plots. 
Remarkably, they achieved an accuracy rate of up to 97% 
when implementing RF and SVM classifiers. However, 
the accuracy escalated to an impressive 99% when they 
utilized the multilayer perceptron classifier. Li and Wu32 
applied advanced deep learning techniques, achieving 
varying levels of accuracy with four different models; 
they included a convolutional neural network, LSTM, 
bidirectional long short-term memory (Bi-LSTM), and 
a combined convolutional neural network + Bi-LSTM 
model. The respective accuracies for these models were 
reported as 96%, 87%, 91%, and 97%. Moreover, the 
researchers successfully refined their model, resulting in 
a significant increase in performance with an impressive 
accuracy rate of 99%.

The present study acknowledges several limitations 
that warrant consideration. Firstly, the recruitment of 
solely male substance users significantly restricts the 
generalizability of the research findings. Consequently, 
future research should be multi-centric and incorporate 
both genders to adequately address this limitation. The 
number of participants in our study is also limited, 
which must be considered in future studies. Thus, further 
investigation using different samples is necessary to 
evaluate the generalizability of these trained models.

The second limitation pertains to the study’s inability 
to account for instances of polydrug consumption. It 
is plausible that individuals engaged in polydrug use 
may exhibit unique EEG patterns, differentiating them 
from those exclusively dependent on MA. Therefore, 
an inclusive approach that considers polydrug users is 
essential for a more comprehensive understanding of the 
relationship between EEG patterns and substance abuse 
in future studies. Additionally, subsequent studies should 
aim to conduct a comparative analysis of EEG patterns 
between MDI and those dependent on other substances, 
such as cocaine, to determine whether the identified EEG 
patterns are specific to MA use.

Thirdly, this study primarily aimed to explore the 
feasibility of utilizing ML methodologies to differentiate 
between individuals who consume MA and healthy 
individuals based on EEG data. To enhance the 
applicability of these findings as markers for detecting 
MA cravings, it is necessary to measure craving levels and 
other variables such as treatment adherence. Therefore, 
further research is warranted. Additionally, it is possible 
that after a year-long period of sobriety and treatment, the 
MA-using group could potentially resemble the healthy 
control group. To obtain a more nuanced understanding 
of this possibility, future research should involve diverse 
sample groups, including untreated MA users, for 
instance.

Conclusion
In conclusion, this study represents a pioneering 
attempt to apply the hctsa method combined with 
ML classification approaches to distinguish between 
healthy individuals and those with MA dependence 
using resting-state EEG data. The results demonstrated 
promising efficacy, with multiple feature combinations 
achieving 100% accuracy across three ML methods. The 
study addressed the challenge of overfitting through 
stratified k-fold cross-validation, ensuring independent 
testing datasets. Previous studies in the field have also 
utilized EEG methodologies to identify MA abuse, 
providing valuable insights into the neurophysiological 
consequences of substance dependence. However, there 
are limitations to consider, including the need for multi-
centric studies with gender diversity, the inclusion of 
polydrug users, and comparative analyses with other 
substance dependencies. Future research should explore 
the potential of EEG patterns as markers for MA cravings, 
considering variables such as treatment adherence and 
craving levels, and involve diverse sample groups to 
further enhance understanding.
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